DNA Stocks List

Related ETFs - A few ETFs which own one or more of the above listed DNA stocks.

DNA Stocks Recent News

Date Stock Title
Nov 16 CRSP 2 Top Biotech Stocks to Buy Now and Hold For 5 Years or More
Nov 15 IVA Inventiva will present data from the final analysis of the Phase 2 study evaluating the combination of lanifibranor with empagliflozin in patients with MASH and T2D at the AASLD The Liver MeetingĀ® late-breaker session
Nov 15 CRSP CRISPR Therapeutics AG (CRSP) Guggenheim Inaugural Healthcare Innovation Conference (Transcript)
Nov 15 DNA Ginkgo Bioworks Holdings Third Quarter 2024 Earnings: Beats Expectations
Nov 15 NTRA Natera, Inc. (NASDAQ:NTRA) Just Reported And Analysts Have Been Lifting Their Price Targets
Nov 15 CRSP Where Will CRISPR Therapeutics Be in 3 Years?
Nov 15 NTRA Stanley Druckenmiller's Strategic Emphasis on Natera Inc in Q3 2024
Nov 14 NTRA Druckenmiller's Duquesne closes some media holdings, loads into regional banks, among Q3 trades
Nov 14 CRSP CRISPR Therapeutics to Present at the Jefferies London Healthcare Conference
Nov 14 NTRA Natera Third Quarter 2024 Earnings: Beats Expectations
Nov 13 NTRA Natera Stock Explodes 20% After Record-Breaking Q3--Is This Biotech Giant Just Getting Started?
Nov 13 NTRA Paymentus Posts Better-Than-Expected Earnings, Joins Dave, Honest Company, Natera, CAVA Group And Other Big Stocks Moving Higher On Wednesday
Nov 13 DNA Ginkgo Bioworks: Not Enough Progress
Nov 13 CRSP 3 Unstoppable Growth Stocks I'm Loading $25,000 Each Into by 2029
Nov 13 NTRA Natera Inc (NTRA) Q3 2024 Earnings Call Highlights: Record Revenue and Raised Guidance Amid ...
Nov 13 NTRA Decoding Natera Inc (NTRA): A Strategic SWOT Insight
Nov 13 NTRA Natera, Inc. (NTRA) Q3 2024 Earnings Call Transcript
Nov 13 DNA Ginkgo Bioworks Holdings, Inc. (DNA) Q3 2024 Earnings Call Transcript
Nov 12 NTRA Natera (NTRA) Q3 Earnings: How Key Metrics Compare to Wall Street Estimates
Nov 12 NTRA Natera (NTRA) Reports Q3 Loss, Tops Revenue Estimates
DNA

Deoxyribonucleic acid ( (listen); DNA) is a molecule composed of two chains that coil around each other to form a double helix carrying the genetic instructions used in the growth, development, functioning, and reproduction of all known living organisms and many viruses. DNA and ribonucleic acid (RNA) are nucleic acids; alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life.
The two DNA strands are also known as polynucleotides as they are composed of simpler monomeric units called nucleotides. Each nucleotide is composed of one of four nitrogen-containing nucleobases (cytosine [C], guanine [G], adenine [A] or thymine [T]), a sugar called deoxyribose, and a phosphate group. The nucleotides are joined to one another in a chain by covalent bonds between the sugar of one nucleotide and the phosphate of the next, resulting in an alternating sugar-phosphate backbone. The nitrogenous bases of the two separate polynucleotide strands are bound together, according to base pairing rules (A with T and C with G), with hydrogen bonds to make double-stranded DNA.
The complementary nitrogenous bases are divided into two groups, pyrimidines and purines. In DNA, the pyrimidines are thymine and cytosine; the purines are adenine and guanine.
Both strands of double-stranded DNA store the same biological information. This information is replicated as and when the two strands separate. A large part of DNA (more than 98% for humans) is non-coding, meaning that these sections do not serve as patterns for protein sequences.
The two strands of DNA run in opposite directions to each other and are thus antiparallel. Attached to each sugar is one of four types of nucleobases (informally, bases). It is the sequence of these four nucleobases along the backbone that encodes genetic information. RNA strands are created using DNA strands as a template in a process called transcription. Under the genetic code, these RNA strands specify the sequence of amino acids within proteins in a process called translation.
Within eukaryotic cells, DNA is organized into long structures called chromosomes. Before typical cell division, these chromosomes are duplicated in the process of DNA replication, providing a complete set of chromosomes for each daughter cell. Eukaryotic organisms (animals, plants, fungi and protists) store most of their DNA inside the cell nucleus and some in organelles, such as mitochondria or chloroplasts. In contrast, prokaryotes (bacteria and archaea) store their DNA only in the cytoplasm. Within eukaryotic chromosomes, chromatin proteins, such as histones, compact and organize DNA. These compact structures guide the interactions between DNA and other proteins, helping control which parts of the DNA are transcribed.
DNA was first isolated by Friedrich Miescher in 1869. Its molecular structure was first identified by Francis Crick and James Watson at the Cavendish Laboratory within the University of Cambridge in 1953, whose model-building efforts were guided by X-ray diffraction data acquired by Raymond Gosling, who was a post-graduate student of Rosalind Franklin. DNA is used by researchers as a molecular tool to explore physical laws and theories, such as the ergodic theorem and the theory of elasticity. The unique material properties of DNA have made it an attractive molecule for material scientists and engineers interested in micro- and nano-fabrication. Among notable advances in this field are DNA origami and DNA-based hybrid materials.

Browse All Tags