Fuel Cell Stocks List

Related ETFs - A few ETFs which own one or more of the above listed Fuel Cell stocks.

Fuel Cell Stocks Recent News

Date Stock Title
Jul 2 AVAV Taiwan to Receive AV’s Switchblade 300 Loitering Munition Systems
Jul 2 HJEN Shell Pauses European Biofuels Facility Construction, Reviews Project Economics
Jul 2 AVAV Defense Contractors Stocks Q1 Recap: Benchmarking Leidos (NYSE:LDOS)
Jul 1 AVAV Looking Into AeroVironment's Recent Short Interest
Jul 1 BE Efficiency in Production at Heart of Bloom Technology
Jun 29 AVAV Results: AeroVironment, Inc. Exceeded Expectations And The Consensus Has Updated Its Estimates
Jun 28 AVAV AeroVironment, Inc. (NASDAQ:AVAV) Q4 2024 Earnings Call Transcript
Jun 28 AVAV Reflecting On Defense Contractors Stocks’ Q1 Earnings: AeroVironment (NASDAQ:AVAV)
Jun 27 HTGC Hercules Capital (HTGC) Rises Higher Than Market: Key Facts
Jun 27 AVAV Why AeroVironment Stock Just Crashed 15%
Jun 27 AVAV AeroVironment 'Well-Positioned' to Exceed Fiscal 2025 Revenue Projections, RBC Says
Jun 27 AVAV Q4 2024 AeroVironment Inc Earnings Call
Jun 27 BE Rags to Riches: 3 Hydrogen Stocks That Could Make Early Investors Rich
Jun 27 AVAV Dow Jones, S&P 500, Nasdaq Higher As Nvidia Falls With Micron
Jun 27 HTGC Wall Street Bulls Look Optimistic About Hercules Capital (HTGC): Should You Buy?
Jun 27 AVAV There’s an Opportunity Brewing in These 2 Aerospace and Defense Stocks, Says Analyst
Jun 27 HTGC 3 Ultra-High-Yield Dividend Stocks to Buy Hand Over Fist Right This Instant
Jun 27 AVAV Micron, Levi Strauss, Walgreens and International Paper fall premarket
Jun 27 AVAV AeroVironment FY2024 Earnings: Switching Gears On Switchblade Demand
Jun 27 AVAV AeroVironment (AVAV) Q4 2024 Earnings Call Transcript
Fuel Cell

A fuel cell is an electrochemical cell that converts the potential energy from a fuel into electricity through an electrochemical reaction of hydrogen fuel with oxygen or another oxidizing agent. Fuel cells are different from batteries in requiring a continuous source of fuel and oxygen (usually from air) to sustain the chemical reaction, whereas in a battery the chemical energy comes from chemicals already present in the battery. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied.
The first fuel cells were invented in 1838. The first commercial use of fuel cells came more than a century later in NASA space programs to generate power for satellites and space capsules. Since then, fuel cells have been used in many other applications. Fuel cells are used for primary and backup power for commercial, industrial and residential buildings and in remote or inaccessible areas. They are also used to power fuel cell vehicles, including forklifts, automobiles, buses, boats, motorcycles and submarines.
There are many types of fuel cells, but they all consist of an anode, a cathode, and an electrolyte that allows positively charged hydrogen ions (protons) to move between the two sides of the fuel cell. At the anode a catalyst causes the fuel to undergo oxidation reactions that generate protons (positively charged hydrogen ions) and electrons. The protons flow from the anode to the cathode through the electrolyte after the reaction. At the same time, electrons are drawn from the anode to the cathode through an external circuit, producing direct current electricity. At the cathode, another catalyst causes hydrogen ions, electrons, and oxygen to react, forming water. Fuel cells are classified by the type of electrolyte they use and by the difference in startup time ranging from 1 second for proton exchange membrane fuel cells (PEM fuel cells, or PEMFC) to 10 minutes for solid oxide fuel cells (SOFC). A related technology is flow batteries, in which the fuel can be regenerated by recharging. Individual fuel cells produce relatively small electrical potentials, about 0.7 volts, so cells are "stacked", or placed in series, to create sufficient voltage to meet an application's requirements. In addition to electricity, fuel cells produce water, heat and, depending on the fuel source, very small amounts of nitrogen dioxide and other emissions. The energy efficiency of a fuel cell is generally between 40–60%; however, if waste heat is captured in a cogeneration scheme, efficiencies up to 85% can be obtained.
The fuel cell market is growing, and in 2013 Pike Research estimated that the stationary fuel cell market will reach 50 GW by 2020.

Browse All Tags